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Abstract

In view of radiation hydrodynamics computations, we propose an implicit and positive numerical scheme that captures
the diffusion limit of the two-moments approximate model for the radiative transfer even on coarses grids. The positivity of
the scheme is equivalent to say that the scheme preserves the limited flux property. Various test cases show the accuracy
and robustness of the scheme.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this work is about accurate discretization of radiation hydrodynamics by means of eulerian
finite volume methods. In this direction we study and discretize a non-linear two-moments model (2) for
radiation in the Eulerian frame written in one space dimension. The model, called in the next M1, derives
from a maximum entropy principle as in [10,27,19,26,5,1]. This model and the related ones are stiff models,
the stiffness parameter is e small. For ICF (inertial confinement fusion applications) e � 10�3, for example
see [30]. There are some regions of the space with very little interactions between the radiation and the
matter and other regions with strong interactions with the matter. The case of little interactions is called
the streaming regime. For strong interaction it is possible to derive diffusion approximations of (2). This
is called the diffusion regime. Among the numerical methods that have been proposed for the discretization
of simplified radiation models, we distinguish between discretization of diffusion approximations and direct
discretization of two-moment models. Concerning numerical method for the discretization of diffusion
approximations we quote [18] in which a technique of flux limiting is discussed in detail. The technique
of flux limiting somehow extends the domain of validity of these diffusion approximations to the streaming
regime. We exhibit a new intermediate interaction regime, of pure hyperbolic type, for which the limit
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equation can be written in divergent form or in non-divergent form. We privilege the divergence form of
this equation. This is different from the work of [9] where the non-divergent formulation is used for the
radiation energy. This is important for the numerics since a non-divergent discretization may converge
to wrong discontinuous solutions [17]. It has been noticed since a long time, in the work of Mihalas
[24] for example, that a direct discretization of a two-moments models can help to get a better discretiza-
tion for both streaming and diffusion regimes. It is also possible that higher moments models could treat
more efficiently the anisotropy of radiation in dimension greater than one.

In this direction, a preliminary question is how to discretize ‘‘correctly’’ a two-moments model for the radi-
ation in the non-relativistic case in dimension one, that is for e small, and at the matter scale. That is, we desire
to adapt the grid according to the length scale of the matter. From the point of view of photons the grid is
coarse. Among the works dedicated to this specific problem we point out [21–23,2]. We show on a simple
example that freezing naively the Eddington factor during the time step gives a non-positive implicit linear
discretization of the problem. This is based on the fact that the linear implicitation of the HLL solver is
non-positive if the equation is non-linear, that is if the Eddington factor is not constant. The new method
we propose has the following features:

Positivity of the scheme: the scheme guarantees the positivity in 1D
�Er 6 F r 6 Er
where Er is the energy of radiation and Fr is the radiation flux. This is equivalent to say the scheme is flux

limited
jF rj
Er

6 1. ð1Þ
The physical meaning of flux limitation is more natural with (1). This property is useful essentially in the
streaming regime for which |Fr| � Er. This flux limiting has nothing to do with the numerical tricks used
for the discretization of diffusion approximations of two-moments models.
Correct diffusion limits: the equilibrium and non-equilibrium diffusion limits of the scheme are correct even
for a coarse mesh,

Correct hyperbolic limit: the numerical treatment of the purely hyperbolic limit (9) is compatible with the
divergent form of the equation.

Time step requirement: the scheme is explicit for the hydrodynamic part and totally implicit for the radiation
part. Therefore, the only CFL limitation comes from the hydrodynamic part.

The first three properties are true at the PDE level for the basic two-moments model. Since the basic two-
moments model considered in this paper is highly non-linear (see (2)), a direct implicit discretization of this
model may be tricky if the material velocity v is non-zero. We now describe the strategy we propose to obtain
these properties at the numerical level. We think this approach is simpler.

The first ingredient to obtain all these properties is what we call a splitted approximation. Usually this
kind of model is called a co-moving frame radiation hydrodynamics model, see [25,20,2]. The model consists
in transporting the radiation entropy and the radiation entropy flux at velocity v, then to discretize with the
matter at rest with v = 0. This splitted approximation has almost zero additional numerical cost. The
maximal hyperbolic wave velocity of the splitted approximation is 1

e � v which slightly exceeds the physical
maximal wave velocity 1

e which is the velocity of light in non-dimensional variables. This is shared with
other co-moving frame radiation hydrodynamics model like [25,20,2]. We think that slight violation of
the velocity of light in very rare cases is much better than diffusion approximations without flux limiting
of the diffusion coefficient. Even with flux limiting of the diffusion coefficient it is difficult to guarantee a
correct velocity for the front propagation in transparent materials. In this work we only consider an explicit
discretization of the hydrodynamics part. On the other hand, the radiative step of the splitted model is dis-
cretized by an implicit method. The reason is the high speed of the radiation signal which is much greater
than the mean velocity of the matter. Since we are interested in the time scale of the matter, the radiation
must be treated implicitly.
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The second ingredient lies in the discretization of the radiative step. The numerical scheme for the radiative
step must be consistent with the diffusion approximation in opaque region and must preserve the flux limited
property. It is well known, cf. [14,15,28], that in opaque regions standard finite volume schemes lead to a
wrong coefficient of diffusion for coarse grids. It is illuminating to consider the hyperbolic heat equation
otuþ
1

e
oxv ¼ 0; otuþ

1

e
oxv ¼ �

1

e2
u.
The asymptotic regime e! 0+ is the heat equation otu � oxxu = 0. The problem stressed in [14,15,28] is that a
discretization with stable upwinded schemes of the hyperbolic equation has the asymptotic limit
otu� 1þ CDx
e

� �
oxxu ¼ 0; C > 0.
Therefore, the discretization of the hyperbolic equation on a coarse grid may have the limit
oxxu ¼ 0
which is wrong. Last decade ‘‘asymptotic preserving schemes’’ (AP scheme), cf. [14,15,28,12], have been devel-
oped in order to recover the correct diffusion asymptotic limit. Thus AP schemes seems to be the good tool for
radiative two-moment models. But actual AP schemes suffer of some limitations. Semi-implicit AP scheme like
those proposed in [15,14] can handle non-linear system but are, in the best case, only positive and stable under
a parabolic CFL condition and this not acceptable for our purpose since we do not want such time step lim-
itation. The AP scheme proposed by Gosse in [12] has a better stability property, but it is difficult to extend
this scheme for non-linear systems: Moreover, the method used in [12] seems quite impossible to extend for a
resonant problem like the one we study in this work. Therefore, we have developed a new discretization of
radiation part of the model. This implicit discretization is unconditionally positive, and has the correct diffu-
sion limit. It is based on two basic schemes. The first one is a ‘‘relaxation’’ scheme, see for example [16], which
has the advantage to transform the initial non-linear problem into a linear one: this is why we solve two linear
systems at each time step. The second one is the AP scheme described [12], in order to obtain the right asymp-
totic diffusion limit with no time step limitation for the positivity. This discretization of the radiative step is an
improved version of the one proposed in [7], it can handle more efficiently opaque and transparent zones. Con-
cerning the cost of such a discretization, let us mention that in one dimension the matrix can be inverted by the
a low cost algorithm like the LU one.

The plan is as follows. In Section 2, we study the M1 model for the radiation and recall various diffusion
approximations of this model. In Section 3, we derive what we call splitted approximations for the M1 model.
Numerical schemes for each part of the splitting are proposed and analyzed in Section 4. In Section 5, we show
some numerical results to demonstrate the features of the scheme, with application to the full system of hydro-
dynamics coupled with radiation. Section 6 is the conclusion. We sketch future developments of the method.

2. Basic equations

2.1. The two-moments model M1

The starting point of the analysis is the following two-moments model for radiation in the Eulerian frame
and written with non-dimensional variables in one space dimension (see [1] for a full derivation)
o

ot
Er þ

1

e
o

ox
F r ¼

cra

e2
ðT 4 � Er þ evF rÞ �

crs

e
vF 0

r ;

o

ot
F r þ

1

e
o

ox
P r ¼ �

cra

e2
ðF r � evðT 4 þ P rÞÞ �

crs

e2
F 0

r ;

P r ¼ vEr; v ¼ 3þ 4f 2

5þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3f 2

p ; f ¼ F r=Er.

ð2Þ
In this model Er is the energy of radiation, Fr is the flux of radiation, Pr is the pressure of radiation and v is
called the Eddington factor. f measures the anisotropy of radiation. For physical reasons the modulus of f is
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bounded by one, |f| 6 1. This Eddington factor was proposed first by Levermore [18] and can be recovered
from a maximum entropy principle as in [27,19,26,5]. For a matter at rest, it can be checked, by means of
the Godunov method, that solutions of the system (2) for a general Eddington factor v verify this flux limited
property provided a) the initial condition satisfies it, b) the Eddington factor v is a even convex positive func-
tion satisfying v(±1) = 1. The Eddington factor considered here has these properties.1

This system has two exterior parameters. The first one is T the temperature of the matter. e is a small param-
eter that measures the velocity of light versus the sound velocity in the matter. For non-relativistic plasmas the
velocity of the matter can be assumed of the same magnitude than sound velocity in the matter, therefore is also
small with respect to the velocity of light. The second exterior parameter is v the velocity of the matter. There-

fore, c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2jvj2

q
P 1 is very close to one for non-relativistic plasmas. F 0

r is the radiation flux energy mea-
sured in the co-mobile reference frame that moves with the matter F 0

r ¼ c2ðð1þ e2v2ÞF r � evðEr þ P rÞÞ. The
particular form of the right-hand side is due to the underlying compatibility of the relaxation source terms with
the Lorentzian invariance of radiation. The absorption–emission opacity ra and the scattering opacity rs are
mean opacities. In practice there are functions of T and the density of the matter. This model, (2), comes from
a maximum entropy principle with Lorentzian invariant source terms [1]. In particular, one can take c = 1 in
(2). Other simpler sources have been proposed in the literature [20]. The conclusions of the present study are
easy to generalize to the source terms of [20] which are very close to the ones used in this work.

2.2. Hyperbolicity and entropy of the radiation

The M1 model (2) is strictly hyperbolic for 0 6 f 2 < 1 and 1 < f 2 < 4
3
. For f 2 ¼ 4

3
it is non-more differentia-

ble. For f = 1 the Jacobian matrix of the flux is oðF r;P rÞ
oðEr;F rÞ ¼

0 1
0 2

� �
. Therefore, the system is only weakly hyperbolic

at f = ±1. We notice that f = ±1 corresponds to a strongly non-isotropic radiation flux. Since the eigenvalues
coincide for f = ±1 it means the system is resonant for |Fr| = Er.

The method of moment assumes the intensity of the radiation is the generalized Planckian 4p5

15
I
m3 ¼ 1

e

m
T r
þ
mbn
T r �1

.

The energy of radiation and the radiation flux can also be computed with respect to Tr and b. One has
Er ¼

R R
Iðm; nÞ dm dn, F r ¼

R R
nIðm; nÞ dm dn and P r ¼

R R
n� nIðm; nÞ dm dn. After some standard calculations

[27,1] one gets
1 A p
comes
limited
Er ¼ T 4
r

3þ b2

3ð1� b2Þ3
; F r ¼ �T 4

r

4b

3ð1� b2Þ3
. ð3Þ
Let Sr and Qr be the entropy and entropy flux of the radiation defined by Sr ¼ � 15
4p5

R R
m2ðn log n�

ðnþ 1Þ logðnþ 1ÞÞ dm dn and Qr ¼ � 15
4p5

R R
m2ðn log n� ðnþ 1Þ logðnþ 1ÞÞn dm dn. One gets the simplified

expressions
Sr ¼
4

3

T 3
r

ð1� jbj2Þ2
; Qr ¼ �bSr. ð4Þ
The mapping (Er,Fr) ´ (Tr,b) is degenerate for b = ±1. Since F r

Er
¼ f ¼ � 4b

3þb2, then b = ±1 is equivalent to
f = «1. It has been proved in [1] (anyway this is compatible with the theory of moment for hyperbolic system
of conservation laws, see [18]) that an algebraic combination of the two equations of the system (2) gives the
equation o

otSr þ 1
e
o
oxQr ¼ 1

T r
SE þ b

T r
SF. This comes from the second principle of thermodynamic for the moment

model, namely Tr dSr = dEr + b dFr.

2.3. Equilibrium diffusion limit

Very classically [20,21] the equilibrium diffusion limit of (2) is recovered with the scaling ra = O(1) and
rs = O(1). Then of course the dominant contribution in the right-hand side of (2) is due to ra. One gets
articular approximation of (2) is called the P1 model, for which the Eddington factor is a constant function v = 1/3. This value
from the choice f = 0 in (2). Since the P1 model is linear, it is trivial to check that the solutions of this model do not verify the flux
property.
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Er = T4 + O(e), F r ¼ �e 1
raþrs

o
oxP r þ e4

3
T 4 þOðe2Þ and P r ¼ 1

3
T 4 þOðeÞ. Since Fr = O(e) then v � 1

3
. Assuming

v = 0 a typical diffusion equilibrium model for the temperature is [20]
o

ot
ðT þ T 4Þ ¼ ox

1

3ðra þ rsÞ
oxT 4

� �
. ð5Þ
This type of model is valid only in opaque materials, but is also used outside of its natural validity domain in
transparent materials for which ra and rs are very small. To see what is the problem in transparent materials it
is sufficient to notice that the model is degenerate parabolic and admits finite speed of propagation for the
fronts T = 0. At the front the temperature can be expanded like T � C1jx� xf ðtÞj

1
3. The speed of propagation

of the front is x0f ðtÞ ¼ C2

3ðraþrsÞoxT 3. Provided oxT3 = O(1) the propagation of the front is highly non-physical in
transparent materials since the jx0f ðtÞj ! 1. In any cases jx0f ðtÞj should be smaller than 1

e.

2.4. Non-equilibrium diffusion limit

It has recently been noticed that the scaling ra = O(e) and rs = O(1) helps to get a non-equilibrium diffusion
limit of the M1 model. Here non-equilibrium means that Er 6¼ T4. It explains why ra needs to be small. On the
other hand, rs is kept of order one, so that the M1 model admits a diffusion limit. Thus the model we presents
hereafter is a simple non-trivial model for the coupling of radiation and hydrodynamics. With the above scal-
ing one gets Er ¼ T 4

r þOðeÞ, F r ¼ �e 1
rs

o
oxT

4
r þ e4

3
vT 4

r þOðe2Þ and P r ¼ 1
3
T 4

r þOðeÞ. With these asymptotics and
definitions, then the equation for Er becomes
o

ot
Er þ

o

ox
� 1

rs

o

ox
Er þ

4

3
vEr

� �
¼ raðT 4 � ErÞ þ v

o

ox
1

3
Er

� �
. ð6Þ
One gets
o

ot
Er þ

o

ox
ðvErÞ þ

Er

3

o

ox
v ¼ raðT 4 � ErÞ þ

o

ox
1

rs

o

ox
Er

� �
. ð7Þ
Thus the radiation energy Er is the solution of a fluid like equation with pressure P r ¼ 1
3
Er. In (7) the velocity is

a given function of time and space v = v(t,x): o
oxv 6¼ 0 a priori. Therefore, v may be discontinuous. Other

approximations of the two-moments model exist in the literature. One commonly used consists in using (7)
with another definition of the radiative pressure and with rt = ra + rs in the right-hand side. One gets
o

ot
Er þ

o

ox
ðvErÞ þ

Er

3

o

ox
v ¼ raðT 4 � ErÞ þ

o

ox
1

ra þ rs

o

ox
Er

� �
. ð8Þ
It means that ra is no more considered as a very small quantity with respect to rs. We will use this model in the
numerical section. The interest of such models is clear. Paraphrasing [25]: The radiation temperature Tr can be
quite different from the material temperature. The spectrum of the radiation field can be non-Planckian.

The model (8) has the same limitation than equilibrium diffusion approximation like (5) in transparent
materials, that is ra and rs small. However, a new intermediate regime appears. Let us assume that ra is small
and rs large. For example ra = O(e) and rs = O(e�1). In this case the equation becomes
o

ot
E

3
4
r þ

o

ox
vE

3
4
r ¼ 0() o

ot
Er þ

o

ox
vEr þ

Er

3

o

ox
v ¼ 0. ð9Þ
The equation is written in divergence form on the left and in non-divergence form on the right. The Er

3
term

in the non-divergence form is the thermodynamic pressure of radiation [25]. The divergence form of the

equation if a conservation equation for E
3
4
r which is the number of photons at equilibrium. Assuming the

matter encounters a shock, the velocity v is the discontinuous. Therefore, a continuous radiation energy
Er is required to give a non-ambiguous value to the non-conservative product Er

3
o
oxv. Unfortunately, the

hypothesis rs = O(e�1) implies a vanishing diffusion and possible discontinuity of Er at the limit. So the
non-conservative product Er

3
o
oxv can be ambiguous. On the other hand, the divergence form of the equation

is non-ambiguously defined for a discontinuous velocity. The Rankine Hugoniot relations for the divergence
formulation of (9) are
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�D½T 3
r � þ ½vT 3

r � ¼ 0; Er ¼ T 4
r .
D is the shock velocity. Assuming radiation is at equilibrium the radiation entropy is Sr ¼ T 3
r and is also equal

to the number of photons. Therefore, the physical meaning of this RH relation is that the integrated number
of photons

R
T 3

r is conserved through the discontinuity. This is compatible with what is proposed at the
numerical level in [25], where no numerical viscosity is used for radiation. The situation is very closed to
ion-electron fluid models, for which the correct Rankine Hugoniot relation is obtained with the entropy of
electron, see [35,8]. There is no entropy deposit on electrons or photons at shocks. This principle is compatible
with the conservation of total energy, the total energy being the sum of the radiation energy and the fluid
energy. For contact discontinuities D = vL = vR the Rankine Hugoniot relation vanishes.

2.5. Splitting method for the non-equilibrium diffusion limit

We begin with a preliminary remark about the discretization in time of the non-equilibrium diffusion limit
equation (7). The idea is to solve (7) with a splitting technique, that is we solve separately during the same time
step
otSr þ oxvSr ¼ 0; Sr ¼
4

3
T 3

r followed by otEr ¼ raðT 4 � ErÞ þ
o

ox
1

3rt

o

ox
Er

� �
; Er ¼ T 4

r . ð10Þ
The first equation in (10) is, for smooth solutions, algebraically equivalent to otEr þ oxvEr þ 1
3
T 4

r oxv ¼ 0. There-
fore, (10) is indeed a convenient way to split (7) into two separate parts. Note that the first equation in (10) is a
first order conservation law, that can be easily discretized with a finite volume technique, while the second
equation is of parabolic type and is easily discretized with a symmetric positive diffusion matrix. The implicit
linear system can be solved with a conjugate gradient algorithm, which reveals very powerful (both in term of
accuracy and speed) for this problem.

3. Splitted approximations of the M1 model

Our aim is at the description of splitted approximation of the M1 model, in view of the discretization of (2)
such that (7) is by construction an asymptotic limit of the scheme. We also take care of the natural reality

condition that says that jF rj
Er
6 1. This comes from jF rj

Er
¼ j
R R

nIðm;nÞ dm dnjR R
Iðm;nÞ dm dn

6 1 for a smooth smooth intensity I.
Straightforward but lengthy calculations show that

Proposition 1. Assuming that Tr > 0 then
jbj < 1() jQrj
Sr

< 1() jF rj
Er

< 1. ð11Þ
From (3) and (4) it is sufficient to prove that : �1 < b < 1 implies �1 < 4b
3þb2 < 1. The range �1 < b < 1 is the

physical range in which the physical solution is searched. The inequalities are strict because the map
(Er,Fr)! (Sr,Qr) is singular at b = ±1. A convenient way to extend the range to �1 6 b 6 1 is proposed in
Section 3.2.
3.1. Splitting method for the M1 model

We generalize the splitting method of (10). The first part of the splitting is written as
o

ot
Sr þ

o

ox
vSr ¼ 0;

o

ot
Qr þ

o

ox
vQr ¼ 0.

ð12Þ
The first equation is natural, in the sense that it is the first equation of (10). The second equation is arbitrary:
notice however that a consequence will be the compatibility with the realizability condition (11).
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Proposition 2. Assume the velocity filed v is smooth. Assume that jQrj
Sr
< 1 for all x at t = 0. Then jQrj

Sr
< 1 for all x

and for all t > 0.

A algebraic consequence of (12) is o
ot

Qr

Sr
þ v o

ox
Qr

Sr
¼ 0. So the parameter b ¼ �Qr

Sr
is just transported by the equa-

tion. It ends the proof.

Proposition 3. The system (12) is algebraically equivalent to
o

ot
Er þ

o

ox
vEr þ

1

3
Er

o

ox
v ¼ 0;

o

ot
F r þ

o

ox
vF r þ

1

3
F r

o

ox
v ¼ 0.

ð13Þ
A proof is as follows. The system (12) is also o
otSr þ v o

oxSr þ Sr
o
oxv ¼ 0 and o

otQr þ v o
oxQr þ Qr

o
oxv ¼ 0. Since one

has dEr ¼ oEr

oSr
dSr þ oEr

oQr
dQr then
o

ot
Er þ v

o

ox
Er þ

oEr

oSr

Sr þ
oEr

oQr

Qr

� �
o

ox
v ¼ 0. ð14Þ
From its definition one has Er ¼ S
4
3
ruðQr

Sr
Þ. Then
oEr

oSr

Sr þ
oEr

oQr

Qr ¼
4

3
S

1
3
r � u

Qr

Sr

� �
� S

4
3
r
Qr

S2
r

u0
Qr

Sr

� � !
Sr þ S

4
3
r

1

Sr

u0
Qr

Sr

� �� �
Qr ¼

4

3
Er.
Using this in (14) it gives the first equation of (13). Concerning the second equation in (13) we note that
F r ¼ S

4
3
rwðQr

Sr
Þ. Therefore, a similar algebra ends the proof of the proposition.

Now we subtract (13) to the M1 model (2). This subtraction allows to reconstruct (2) using the splitting
method. The subtraction is valid only for the derivatives in space, and not in time. We get
o

ot
Er þ

o

ox
F r

e
� vEr

� �
� Er

3

o

ox
v ¼ SE;

o

ot
F r þ

o

ox
P r

e
� vF r

� �
� F r

3

o

ox
v ¼ SF.

ð15Þ
We claim that the non-equilibrium diffusion limit of (15) is (6) but with v ” 0. This property means that the
splitting method has really subtract the drift effect due to the Lorentzian compatibility of the model.

Proposition 4. Whatever v is, the non-equilibrium diffusion limit (ra = O(e2) and rs = O(1)) of the system (15) is

the second equation of (10), that is
o
otEr þ o

ox � 1
rs

o
oxEr

� �
¼ raðT 4 � ErÞ. ð16Þ
This property means that if we set v = 0 in (15) then we respect the non-equilibrium diffusion limit of the M1

model, provided we use the splitting method. If v ” 0 the system (15) is the standard radiation M1 model with
the matter at rest.

The splitted model is made of (12) followed by (15) where we have set v = 0. This model is composed of (12)
followed by
o

ot
Er þ

o

ox
F r

e

� �
¼ ra

e2
ðT 4 � ErÞ;

o

ot
F r þ

o

ox
P r

e

� �
¼ � ra þ rs

e2
F r.

ð17Þ
In the numerical section we will show how to derive accurate and robust schemes for the discretization of (12)–
(17).



724 C. Buet, B. Despres / Journal of Computational Physics 215 (2006) 717–740
3.2. Elimination of the singularity near |f| = 1

The method of moment is singular near f = ±1 since in this case Tr is zero for finite Er, see formula (3). It
simply means that, far from isotropy, Tr is not a temperature and is only a parameter of the generalized Planc-
kian. At the numerical level we prefer to use non-singular equations near f = ±1. We think this is important to
get accurate numerical results if f is close to 1, because singular equations are most of time difficult to discretize
correctly.

We notice that it is sufficient to redefine Sr ¼ E
3
4 and Qr ¼ �bE

3
4, because (12) is equivalent to (ot + vox)b = 0

and otT 3
r þ oxðvT 3

RÞ ¼ 0. This transformation is a smooth map between (Er,Fr) and ðSr;QrÞ ¼ ðE
3
4;�bE

3
4Þ.

From now on the splitted approximation we use is
o

ot
Sr þ

o

ox
vSr ¼ 0; Sr ¼ E

3
4
r;

o

ot
Qr þ

o

ox
vQr ¼ 0; Qr ¼ �bE

3
4
r.

ð18Þ
followed by
o

ot
Er þ

o

ox
F r

e

� �
¼ ra

e2
ðT 4 � ErÞ;

o

ot
F r þ

o

ox
P r

e

� �
¼ � ra þ rs

e2
F r.

ð19Þ
3.3. Extension for radiation hydrodynamics

Written in non-dimensional variables the model we use is
o

ot
ðqÞ þ o

ox
ðqvÞ ¼ 0;

o

ot
ðqvÞ þ o

ox
qv2 þ p þ Er

3

� �
¼ 0;

o

ot
ðqE þ ErÞ þ

o

ox
qEvþ pvþ Er

3
vþ 1

e
F r

� �
¼ 0;

1

e
o

ot
Er þ oxðvErÞ þ

Er

3
oxvþ

o

ox
F r ¼

ra

e2
ðT 4 � ErÞ;

1

e
o

ot
F r þ oxðvF rÞ þ

F r

3
oxvþ

o

ox
P r ¼ �

ra þ rs

e2
F r;

ð20Þ
where the source terms are Oð 1
e2Þ in opaque materials and are negligible in transparent materials. In view of the

previous analysis, we propose to split the radiative solver from the hydrodynamics solver. It means that (20) is
solved using
o

ot
ðqÞ þ o

ox
ðqvÞ ¼ 0;

o

ot
ðqvÞ þ o

ox
qv2 þ p þ Er

3

� �
¼ 0;

o

ot
ðqE þ ErÞ þ

o

ox
qEvþ pvþ Er

3
v

� �
¼ 0;

o

ot
Sr þ

o

ox
ðuSrÞ ¼ 0; Sr ¼ E

3
4
r;

o

ot
Qr þ

o

ox
ðuQrÞ ¼ 0; Qr ¼ �bSr;

ð21Þ
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with b defined by (3), and followed by
otEr þ
1

e
oxF r ¼ ra

T 4 � Er

e2
;

otF r þ
1

e
oxP r ¼ �rt

F r

e2
; rt ¼ ra þ rs;

qCvotT ¼ ra

Er � T 4

e2
.

ð22Þ
It is possible to treat directly the radiative moment system. We think our approach is simpler to capture the
diffusion limit of the model.
4. Derivation of the numerical schemes

The time step is Dt > 0, the mesh size is Dx > 0, the value of the radiative energy and flux in the cell
�ðj� 1

2
ÞDx; ðjþ 1

2
ÞDx½ and at time step n is denoted as ðEj;n

r ; F
j;n
r Þ. Similarly, the radiative entropy and radia-

tive entropy flux are ðSj;n
r ;Q

j;n
r Þ. The velocity un

jþ1
2

is assumed to be known at each interface and at each time
step.

4.1. Discretization of (18)

The discretization is quite natural in the context of finite volume method. Many methods exist. For the sake
of completeness we describe the most simple one. We assume that un

jþ1
2
P 0 for all (j, n), so that the up-winding

is uniform. With this hypothesis, the scheme is
Sj;nþ1
r � Sj;n

r

Dt
þ

un
jþ1

2
Sj;n

r � un
j�1

2
Sj�1;n

r

Dx
¼ 0;

Qj;nþ1
r � Qj;n

r

Dt
þ

un
jþ1

2
Qj;n

r � un
j�1

2
Qj�1;n

r

Dx
¼ 0.

ð23Þ
Proposition 5. Assume that jQ
j;n
r j

Sj;n
r
6 1 for all j. Assume the CFL condition ðmaxjun

jþ1
2

ÞDt 6 Dx. Then one has
jQj;nþ1

r j
Sj;nþ1

r

6 1 for all j.

Let us use simplified notations for the sake of convenience : a = Sr � Qr and b = Sr + Qr. Then a and b
satisfy the same discrete equations, which implies the positivily under CFL.
4.2. Discretization of the radiative step (22)

In this part we explain the main features of the scheme we propose for the discretization of the (22). First,
we show that a direct linear implicitation of the HLL like solvers leads to a non-positive linear implicit prob-
lem. Second, we modify the HLL solver and introduce a new scheme. We show that the modification fixes the
positivity of the scheme. For expository purposes we take ra = rs = 0 when dealing with the HLL solver and
ra = 0, rs P 0 for the new scheme. Finally, we consider the general case ra P 0 and rs P 0. The general
method is to use the theory of M-matrices.

Since we describe and analyze implicit schemes, the boundary conditions are important because they mod-
ify the coefficients of the linear system. A bad discretization may pollute the M-matrix structure.
4.2.1. A basic example of a non-positive implicit solver
We begin with a simple basic example which shows that a direct implicitation is a priori non-positive. Let us

freeze the Eddington factor in (22) and take r ” 0
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o

ot
Er þ

o

ox
F r

e

� �
¼ 0;

o

ot
F r þ

o

ox
a2Er

e

� �
¼ 0.

ð24Þ
Here the coefficient a is the square root of the Eddington factor defined by a2 ¼ P r

Er
2 ½1

3
; 1�. Then we discretize

(24) with a standard approximate Godunov method, the so-called HHL scheme which is described in [34, p.
298]. Since the maximum wave speed is 1

e the scheme is
Ej;nþ1
r � Ej;n

r

Dt
þ 1

e
F

jþ1
2;nþ1

r � F
j�1

2;nþ1
r

Dx
¼ 0;

F j;nþ1
r � F j;n

r

Dt
þ 1

e
ða2EÞjþ

1
2;nþ1 � ða2EÞj�

1
2;nþ1

Dx
¼ 0.

ð25Þ
The inter-facial flux is given by the first order finite volume approximation
ða2EÞjþ
1
2;nþ1 ¼

ða2
j Ej;nþ1

r þ a2
jþ1Ejþ1;nþ1

r Þ þ F j;nþ1
r � F jþ1;nþ1

r

2
;

F
jþ1

2;nþ1
r ¼ F j;nþ1

r þ F jþ1;nþ1
r þ Ej;nþ1

r � Ejþ1;nþ1
r

2
.

ð26Þ
This is an implicit linear system that we solve with a direct solver in dimension one. A conjugate gradient sol-
ver can be used if needed in dimension two and more. Unfortunately, this scheme does not necessarily respect
the flux limiting property. The scheme may be non-positive. To show this, we rely on the theory of M matrices
[3]. This theory provide necessary and sufficient conditions such that the solution of a general linear system
Ax ¼ b gives a non-negative solution x P 0 for all b P 0. Here x P 0 means that xi P 0 for all i. We retain
the simple condition on A
if aij 6 0 8i 6¼ j; and
X

j

aij > 0 8i or
X

i

aij > 0 8j
 !
then A is an M-matrix with x ¼A�1b P 0 for all b P 0. The flux limited condition |Fr| 6 Er is equivalent to
the positivity of u = Er + Fr and v = Er � Fr. Therefore, we check the property of M matrix for the system (25)
with the flux defined by (26) and for the unknown x = (uj,n+1,vj, n+1)j and the right-hand side b = (uj,n,vj,n)j.
For the sake of simplicity assume that r ” 0 so that M ” 1. The equation for vj,n+1 is
vj;nþ1 � vj;n

Dt
þ 1

4eDx
1� a2

jþ1
2

� �
ujþ1;nþ1 þ a2

j�1
2
� 1

� �
uj�1;nþ1 þ �3� a2

jþ1
2

� �
vjþ1;nþ1

�
þ �1� a2

j�1
2

� �
vj�1;nþ1 þ 4vj;nþ1

�
¼ 0.
If ajþ1
2
< 1 the extra-diagonal coefficient in front of uj+1,n+1 has the wrong sign. There is a similar property for

the equation that gives uj,n+1. Therefore, the solution of the linear system can be non-positive.
It is worthwhile to notice that the explicit scheme is positive. The equation becomes
vj;nþ1 � vj;n

Dt
þ 1

4eDx
1� a2

jþ1
2

� �
vjþ1;n þ a2

j�1
2
� 1

� �
vj�1;n þ �3� a2

jþ1
2

� �
vjþ1;n þ �1� a2

j�1
2

� �
vj�1;n þ 4vj;n

� �
¼ 0.
One can check that ð1� a2
jþ1

2
Þujþ1;n þ ða2

j�1
2
� 1Þuj�1;n

6 0 because a2
j ¼ aðF

j;n
r

Ej;n
R

Þ2 P 2jF
j;n
r

Ej;n
R

j � 1. Nevertheless the ex-

plicit scheme is restricted by the explicit CFL condition Dt
eDx 6 1. This is why we propose in the following a new

linear implicit AP and unconditionally positive scheme.

4.2.2. AP and positive discretization of (22) with ra = 0

The idea is to use use a strategy that has been proposed and used in [6,7]. It consists in a linearization of the
system combined with a well balanced scheme. Depending on the linearization, it is possible to design different
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numerical schemes with slightly different theoretical properties. In order to simplify the presentation, we con-
sider (24). We will indicate later on how to deal with the temperature relaxation. Here we use a strategy that
has been first proposed and used in [6,7]. It consists in the use of a relaxation method (see for example [16] for
principle of relaxation method) to ‘‘linearize’’ the system and a ‘‘well-balanced’’ scheme. This combination
gives stability and preservation of the asymptotic limit.

Let us first define the relaxation method. We introduce the intermediate relaxation unknowns X ¼ F r

a and
Y ¼ P r

a and we consider the system
o

ot
Er þ

1

e
o

ox
aX ¼ 0;

o

ot
X þ 1

e
o

ox
aEr ¼ �

r
e2

X þ 1

k
F r

a
� X

� �
;

ð27Þ
and
o

ot
Y þ 1

e
o

ox
aF r ¼ 0;

o

ot
F r þ

1

e
o

ox
aY ¼ � r

e2
F r þ

1

k
P r

a
� Y

� �
.

ð28Þ
The coefficient a is the square root of the Eddington factor defined by a2 ¼ P r

Er
. The additional variables are

X � F r

a and Y � P r

a . More exactly if the relaxation coefficient k tends to 0, then X ! F r

a and Y ! P r

a , and the
asymptotic limit is indeed (19). In the original work [6,7], the relaxation variables were X = Fr and Y = Pr.
Our choice has better properties.

As it is usually done, we consider the relaxed version of (27). This is no more that using a splitting technique
to solve (27), by splitting the relaxation source from the rest and let formally k tends to 0 in the relaxation step.
This leads to the following transport-projection algorithm:

� Transport step: let a ¼ ffiffiffiffiffi
vn
p

X n ¼ F n
r

a and Y n ¼ P n
r

a at the beginning of the time step. Then we solve the systems
o

ot
Er þ

1

e
o

ox
aX ¼ 0;

o

ot
X þ 1

e
o

ox
aEr ¼ �

r
e2

X ;
ð29Þ
and
o

ot
Y þ 1

e
o

ox
aF r ¼ 0;

o

ot
F r þ

1

e
o

ox
aY ¼ � r

e2
F r;

ð30Þ
during one time step. So we know the initial conditions at nDt and we use (29) and (30) to compute all quan-
tities at (n + 1)Dt: that is Enþ1

r , F nþ1
r , Xn+1 and Yn+1.

� Projection step: we drop Xn+1 and Yn+1 and reinitialize a ¼
ffiffiffiffiffiffiffiffiffi
vnþ1

p
, X nþ1 ¼ F nþ1

r

a and Y nþ1 ¼ P nþ1
r

a .
Therefore, it remains to explain how we discretize (29) and (30) and what advantages come from this strat-
egy. One can remark that (29) and (30) are decoupled.The method we use for (29) or (30) comes from the
work [11–13] about well-balanced schemes for hyperbolic systems with source terms. Originally the goal of
this technique was to preserve stationary solutions. Essentially it consists in collapsing the source terms at
interfaces and to write down the Godunov method. This step needs the computation of the solution of a
Riemann problem with a Dirac source term at the interface. This is quite easy to for linear equations.
We refer to [12] for the construction of the method, and to [7] for a simple explanation in the linear case.
In what follows we only describe the result of the application of the method to our case.

We have decided to present the scheme with natural notations, such that the consistency of the scheme
becomes clear. The coefficient Mjþ1

2
is defined on the interfaces by
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Mjþ1
2
¼

2ajþ1
2
e

rjþ1
2
Dxþ 2ajþ1

2
e

ð31Þ
where quantities of the type qjþ1
2

are mean value of qj and qj+1. Then we discretize (29) with
Ej;nþ1
r � Ej;n

r

Dt
þ 1

e

Mjþ1
2
ajþ1

2
X jþ1

2;nþ1 �Mj�1
2
aj�1

2
X j�1

2;nþ1

Dx
¼ 0;

X j;nþ1 � X j;n

Dt
þ 1

e

Mjþ1
2
ajþ1

2
Ejþ1

2;nþ1 �Mj�1
2
aj�1

2
Ej�1

2;nþ1

Dx

¼ � 1

2
Mjþ1

2

aj

ajþ1
2

rjþ1
2

e2
þMj�1

2

aj

aj�1
2

rj�1
2

e2

 !
X nþ1

i þ
Mjþ1

2
�Mj�1

2

eDx
aiEnþ1

i .

ð32Þ
The initial value of the additional unknown X is X j;n ¼ F j;n
r

aj
. The fluxes are
ajþ1
2
Ejþ1

2;nþ1 ¼ ajEj;nþ1 þ ajþ1Ejþ1;nþ1

2
þ ajX j;nþ1 � ajþ1X jþ1;nþ1

2
;

ajþ1
2
X jþ1

2;nþ1 ¼ ajX j;nþ1 þ ajþ1X jþ1;nþ1

2
þ ajEj;nþ1 � ajþ1Ejþ1;nþ1

2
.

ð33Þ
The linear scheme (32) and (33) is implicit and can easily be solved in 1D. For the system (30), the scheme is
exactly the same except that Er is replaced by Y and that X is replaced by Fr. Nevertheless the initialization of
the Y variable is Y j;n ¼ P j;n

r

aj
.

Proposition 6 (The scheme is AP). Assume that r = O(1) and e is small. Then the diffusion limit of the scheme

(25) is
Ej;nþ1
r � Ej;n

r

Dt
�

1
3r

jþ1
2

ðEjþ1;nþ1
r � Ej;nþ1

r Þ � 1
3r

j�1
2

ðEj;nþ1
r � Ej�1;nþ1

r Þ

Dx2
¼ 0. ð34Þ
The second equation in (25) implies that F j;nþ1
r is small of order e : F j;nþ1

r ¼ OðeÞ. Since this is true for all j

and n, then the Eddington factor is close to one third a2 ¼ 1
3
þOðeÞ for all j and n. Then
Mjþ1
2
¼

2 1ffiffi
3
p e

rjþ1
2
Dx
þOðe3

2Þ. ð35Þ
So the flux that matters in (25) is up to O(e)
Mjþ1
2

e
F

jþ1
2;nþ1

r ¼
1ffiffi
3
p

2 1ffiffi
3
p e

r
jþ1

2
Dx ðE

jþ1;nþ1
r � Ej;nþ1

r Þ

2
¼ Ejþ1;nþ1

r � Ej;nþ1
r

3rjþ1
2
Dx

.

It ends the proof.
It is particularly convenient to use the diagonal form of the system. Let u = Er + X and v = Er � X. The

equations can be written as a system in x = (u,v)
uj;nþ1 � uj;n

Dt
þ

Mj�1
2

e
ajuj;nþ1 � aj�1uj�1;nþ1

Dx
¼ Mj�1

2

aj

aj�1
2

rj�1
2

2e2
ðvj;nþ1 � uj;nþ1Þ;

vj;nþ1 � vj;n

Dt
�

Mjþ1
2

e
ajþ1vjþ1;nþ1 � ajvj;nþ1

Dx
¼ Mjþ1

2

aj

ajþ1
2

rjþ1
2

2e2
ðuj;nþ1 � vj;nþ1Þ.

ð36Þ
In view of (36) the natural discrete boundary conditions are
j ¼ 1 : aj�1uj�i;nþ1 ¼ a1ajvj;nþ1 þ a2 with a1; a2 P 0;

j ¼ N : ajþ1vjþi;nþ1 ¼ a3ajuj;nþ1 þ a4 with a3; a4 P 0.
ð37Þ
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Plugging the boundary conditions (37) inside the scheme (36) the linear system can be written as
Ax ¼ b; A ¼ I � DtMS � DtMBC; ð38Þ
where MS is the matrix of the scheme, and MBC is for the boundary conditions. The matrix A is not symmet-
ric. The right-hand side is b = xn + Dt(a2,0, . . . , 0,a4). By construction one has the property MS

ii 6 0, MS
ij P 0

for i 6¼ j and
P

iM
S
ij 6 0 and (this is trivial) MBC

ii 6 0; MBC
ij P 0 for i 6¼ j and

P
iM

BC
ij 6 0. The inequalityP

iM
S
ij 6 0 is an equality inside the domain:

P
iM

S
ij ¼ 0 for 2 6 j 6 N � 1. Therefore, the diagonal of A is

strictly dominant with respect to the columns inside the domain. It is of particular interest to show that diag-
onal of A is also dominant at the boundaries. It is the case for incoming boundary conditions for which
a1 = a3 = 0. For transparent conditions one has also a2 = a4 = 0. For general boundary conditions the prop-
erty is guaranteed if 0 6 a1 6 1 and 0 6 a3 6 1 : we note this property comes from the dissipative nature of the
boundary conditions. From now on, we assume that
Aij 6 0 for i 6¼ j; and
X

i

Aij > 0 8j.
Therefore, the matrix A is an M-matrix. A general reference is [3]. That is A is invertible and A�1 P 0.

Proposition 7 (The scheme is positive). Assume that Ej;n
r � F j;n

r P 0 for all j. Then Ej;nþ1
r � F j;nþ1

r P 0 for all j.

This flux limited property is the reason why we prefer to use this relaxation method rather than the direct
approach (26). The price to pay is that we need to solve two linear systems with twice the number of unknowns
when compared with (26). The linear systems are absolutely identical. We divide the proof of Proposition 7 in
three steps.

(a) Claim that Ej;nþ1
r � X j;nþ1 P 0. The proof consists in writing the equation for u = Er + X and v = Er � X.

This set of linear equations can be rewritten as Ax ¼ b where A is the matrix of the system,
x = (u j,n+1,v j,n+1) is the unknown of the linear system and b = (u j,n,v j,n) is the right-hand side of the lin-
ear system. To prove the claim it is sufficient to prove that all component of x are non-negative. First, we

assume that all component of b are non-negative, which is due to the hypothesis: jX
j;nj

Ej;n
r
¼ jF j;n

r j
ajEj;n

r
6 1. Second,

we us the M-matrix property. It proves the claim uj;nþ1 ¼ Ej;nþ1
r þ X j;nþ1 P 0 and vj;nþ1 ¼ Ej;nþ1

r �
X j;nþ1 P 0.

(b) Claim that Y j;nþ1
r � F j;nþ1

r P 0. We use the same method. Let w = Y + Fr and z = Y � Fr. Then
wj;n ¼ Y j;n þ F j;n

r ¼
P j;n

r

aj
þ F j;n

r ¼ ajEj;nðaj þ F j;n
r

Ej;nÞ. Since aj is a function of the non-dimensional radiation

flux F j;n
r

Ej;n, then it is sufficient to study the function f 7!a ¼ ffiffiffi
v
p

. Since v� f 2 ¼ ð1�
ffiffiffiffiffiffiffiffiffi
4�3f 2
p

Þ2

3
P 0, then

a P |f| and therefore wj,n P 0. Similarly, zj,n P 0. The new values x 0 = (w j,n+1,z j,n+1) are solutions of
the same linear linear system, Ax0 ¼ b0 where b 0 = (wj,n,zj,n). Since b 0 P 0 then x 0 also. Therefore,
wj,n+1,zj,n+1 P 0.

(c) Claim that Ej;nþ1
r � F j;nþ1

r P 0. Let us define r = E � Y + X � F and s = E � Y � (X � F). Since E, X

and Y, F are by definition solutions of the same linear system (32) but with a different initialization
of course, then the same method can be used to study the non-negativity of r j,n+1, s j,n+1. It is sufficient
to check that rj,n, sj,n are non-negative at the beginning of the time step. One has
rn ¼ En
r � aEn

r þ
F n

r

a
� F n

r ¼ ð1� aÞðEn
r þ

F n
r

a
ÞP 0;

sn ¼ En
r � aEn

r �
F n

r

a
þ F n

r ¼ ð1� aÞðEn
r þ

F n
r

a
ÞP 0.
Therefore, rn+1 P 0 and sn+1 P 0. At the end of the time step
2ðEnþ1
r � F nþ1

r Þ ¼ rnþ1 þ znþ1 þ vnþ1 P 0;

2ðEnþ1
r þ F nþ1

r Þ ¼ snþ1 þ wnþ1 þ unþ1 P 0.
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4.3. Discretization of the full system (22)

Now we describe the scheme for the full system (22). The main tool is, indeed, the discretization described in
Section (4.2.2). Let us define the quantities u, v, w, z as u = Er + X, v = Er � X, w = Y + Fr and z = Y � Fr.

and let also aj�1
2
ðrÞ ¼ 2Mj�1

2
ðrÞ aj

a
j�1

2

r
j�1

2

2e2 where Mj�1
2
ðrÞ is defined in (31).

The transport part of the AP-relaxation scheme described in (4.2.2) can be written now, in its diagonalized
form, as
qjCv
T j;nþ1 � T j;n

Dt
¼

aj�1
2
ðraÞ þ ajþ1

2
ðraÞ

2

uj;nþ1 þ vj;nþ1

2
� ðT j;nþ1Þ4

� �
;

uj;nþ1 � uj;n

Dt
þ

Mj�1
2
ðrtÞ

e
ajuj;nþ1 � aj�1uj�1;nþ1

Dx

¼ aj�1
2
ðraÞððT j;nþ1Þ4 � uj;nþ1Þ þ aj�1

2
ðrtÞ � aj�1

2
ðraÞ

� � vj;nþ1 � uj;nþ1

2
;

vj;nþ1 � vj;n

Dt
�

Mjþ1
2
ðrtÞ

e
ajþ1vjþ1;nþ1 � ajvj;nþ1

Dx

¼ ajþ1
2
ðraÞððT j;nþ1Þ4 � vj;nþ1Þ þ ajþ1

2
ðrtÞ � ajþ1

2
ðraÞ

� � uj;nþ1 � vj;nþ1

2
. ð39Þ

wj;nþ1 � wj;n

Dt
þ

Mj�1
2
ðrtÞ

e
ajwj;nþ1 � aj�1wj�1;nþ1

Dx

¼ aj�1
2
ðraÞðajðT j;nþ1Þ4 � wj;nþ1Þ þ aj�1

2
ðrtÞ � aj�1

2
ðraÞ

� � zj;nþ1 � wj;nþ1

2
;

zj;nþ1 � zj;n

Dt
�

Mjþ1
2
ðrtÞ

e
ajþ1zjþ1;nþ1 � ajzj;nþ1

Dx

¼ ajþ1
2
ðraÞðajðT j;nþ1Þ4 � zj;nþ1Þ þ ajþ1

2
ðrtÞ � ajþ1

2
ðraÞ

� �wj;nþ1 � zj;nþ1

2
.

ð40Þ
This discretization remains AP, the proof is as in Section (4.2.2). For an infinite domain, one can also easily
check the conservation of the total energy qjCvTj + Er,j.

During the time step the systems (39) and (40) are, as before, decoupled. But now (39) is a non-linear sys-
tem. The iterative procedure we use to solve system (39) is based on a fixed point procedure proposed first in
[33] for non-equilibrium diffusion model. The basic idea of this fixed point procedure is to use H = T4 as
unknown instead of T. In [33], it has been reported good convergence behavior of this method. For conve-
nience the index n at the beginning of the time step has been dropped. Our iterative procedure for (39) is
qjCvl
q
j
Hj;qþ1 �Hj

Dt
¼

aj�1
2
ðraÞ þ ajþ1

2
ðraÞ

2
;

uj;qþ1 þ vj;qþ1

2
�Hj;qþ1

� �
uj;qþ1 � uj

Dt
þ

Mj�1
2
ðrtÞ

e
ajuj;qþ1 � aj�1uj�1;qþ1

Dx

¼ aj�1
2
ðraÞ Hj;qþ1 � uj;qþ1 þ vj;qþ1

2

� �
þ aj�1

2
ðrtÞ

vj;qþ1 � uj;qþ1

2
;

vj;qþ1 � vj

Dt
�

Mjþ1
2
ðrtÞ

e
ajþ1vjþ1;qþ1 � ajvj;qþ1

Dx
¼ ajþ1

2
ðraÞ Hj;qþ1 � uj;qþ1 þ vj;qþ1

2

� �
þ ajþ1

2
ðrtÞ

uj;qþ1 � vj;qþ1

2
.

ð41Þ
The coefficient lq
j is defined by lq

j ¼ T j;q�T j

Hj;q�Hj. By construction we have to solve at each iteration on q a linear
system
fAq

~xq ¼ ~b
q
;

where ~xq ¼ ðqCvlqHqþ1; uqþ1; vqþ1Þ and ~b
q ¼ ðqCvlqH; u; vÞ. The matrix fAq

is an M-matrix.
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Therefore, at each iteration q one has the positivity of the material temperature and the flux limited prop-
erty. Next we show that the algorithm is strictly contracting. By computing the difference between two succes-
sive iterates of (41) one has the relation
2 Co
ð1� m

So
P

i

fAq
~yq ¼ ~cq;
where ~yq ¼ ðqCvlqðHqþ1 � hqÞ; uqþ1 � uq; vqþ1 � vqÞ and ~cq ¼ ðqCvðlq � lq�1ÞHq; 0; 0Þ. The structure of fAq
is

similar to the structure of A, that is there exists a matrix Mq such that fAq
¼ I � DtMq. The important prop-

erty of Mq is
Mq
ij P 0 for i 6¼ j;

X
i

Mq
ij 6 0.
A consequence2 is as follows: the matrix ðfAq
Þ�1
6 1 is contracting in l1.

Therefore,
X
j

qCvl
q
j jHqþ1

j �Hq
j j þ

1

2
juqþ1

j � uq
j j þ

1

2
jvqþ1

j � vq
j j

� �
6

X
j

ðqCvl
q�1
j jHq

j �Hq�1
j jjbq

j jÞ

6 ðmax
j
jbq

j jÞ �
X

j

ðqCvl
q�1
j jHq

j �Hq�1
j jÞ;
where bq
j ¼

lq
j�lq�1

j

Hq
j�Hq�1

j

� Hq
j

lq�1
j

Using the definition of the quantities lq
j , one can easily check that, at convergence,

this quantity scales like bq
j � 1

4
� 3ðT q

j Þ
3þ2ðT q

j Þ
2T j;nþT q

j T 2
j;n

ðT q
j Þ

3þðT q
j Þ

2T j;nþT q
j T 2

j;nþT 3
j;n

, so jbj < 3
4
. Since this number b is the asymptotic value of

contraction ratio of the fixed point procedure, it explains why this algorithm is strictly contracting in any
neighborhood of the solution. Moreover, all steps of the fixed point procedure are positive (this property
was already stressed in the work [33]). In our context it is also a consequence of the M matrix property.

5. Numerical results

All test cases have been performed with the algorithm proposed in this work. The boundary have been
chosen so that the results are independent of the way the boundary conditions are enforced. In the Su–
Olson test case, the problem is symmetric. For the streaming test problem we use free boundary condi-
tions as described in Eq. (37). For the transfer test case we use infinite opacities near the boundaries.
The boundary conditions for the other test cases have been treated with a combination of such boundary
conditions.

5.1. Su–Olson test case

This test case come from [32]. It is a basic non-equilibrium radiative transfer consisting of an initially cold,
homogeneous, infinite, and isotropically scattering medium with an internal radiation source turned on at time
zero [29].

The opacity is taken constant but with Cv = aT3. The source term S = 1 localized in |x| 6 1/2. The system of
equations to solve reduced to, see [29] for a precise derivation of the model,
otEr þ oxF r ¼ ðT 4 � ErÞ þ S;

otF r þ oxP r ¼ �F r;

otT 4 ¼ Er � T 4.

ð42Þ
nsider Ax = b where A = I �M and M is such that mij P 0 for i 6¼ j and
P

imij 6 0. The linear system is equivalent to

iiÞxi ¼ bi þ
P

j 6¼imijxj. So ð1� miiÞjxij 6 jbij þ
P

j 6¼imijjxjj. We getX
i

ð1� miiÞjxij 6
X

i

jbij þ
X

i

X
j 6¼i

mijjxjj ¼
X

i

jbij þ
X

j

ð
X
i6¼j

mijÞjxjj.

jxij 6
P

ijbij þ
P

jð
P

imijÞjxjj 6
P

ijbij. The property is proved.
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The problem is symmetric. The solution has not the time to reach the exterior boundary. This test problem
has been used to benchmark various strategies about the analytical definition (Er,Fr) ´ Pr, diffusion
approximations, and numerical algorithms to solve the problem. In [29] it has been claimed that the variable
Eddington factor gives non-smooth and oscillating solutions. On the contrary our results show that it is
probably the numerical schemes used in [29] that were unstable for this test case, since our results are stable
(i.e., non-oscillating) and accurate.

In Fig. 1, we plot the result given by scheme for the solution of (42) versus the solution of the diffusion
approximation of the same model, that is
Fig. 1.
(log-sc
otEr �
1

3
oxxEr ¼ ðT 4 � ErÞ þ S.
The solution of the diffusion approximation has been computed with a standard parabolic implicit finite
difference scheme. For small time, we see a difference between diffusion and variable Eddington factor.
For large time, both methods give the same result, as predicted by the theory. In all cases the solution
of the variable Eddington model (42) is free of oscillations. It illustrates the stability and robustness of
the algorithm proposed in this work. For large time the variable Eddington model admits theoretically
the diffusion model as asymptotic limit. At the numerical level this is also true because Mjþ1

2
¼ 2

2þDx � 1
in the scheme, see Eq. (35).

In Fig. 2, we plot the Eddington factor f ¼ F r

Er
at different times. The result is free of oscillations. One can

compare with the results of [29, p. 629]. Moreover, �1 6 f 6 1 as stated in Proposition 7.
1
0.001

0.01

0.1

1

t=.1,  M1 Levermore VEF
t=1,   M1 Levermore VEF
t=3,   M1 Levermore VEF
t=10, M1 Levermore VEF
t=.1,  Diffusion
t=1,   Diffusion
t=3,   Diffusion
t=10, Diffusion

Variable Eddington factor versus diffusion (F r ¼ �1
3
oxEr) at different times. Radiative energy (log-scaled) versus the optical depth

aled).

Fig. 2. Eddington factor v(f) where f ¼ F r

Er
versus the optical depth (log-scaled). Same times as in Fig. 1.
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5.2. Streaming

This numerical test case illustrates the ability of the scheme to be accurate and stable for streaming. We
solve (2) with ra = rs = v = 0 and e = 1.

The initial data are
Table
Error

Cells

Error

The or
E1 ¼ F r ¼
1 if 0:4 < x < 0:6;

0 otherwise.

	

We use free boundary conditions, standard for advection problems.

Since the velocity is one, the analytical solution at time t = 0.2 is
t ¼ 0:2 : E1 ¼ F r ¼
1 if 0:6 < x < 0:8;

0 otherwise.

	

The error in L1 norm is given in Table 1. One sees that the scheme is of order 0.5 in L1 norm. Since the scheme
is implicit the price to pay is the extra numerical diffusion compared with an explicit discretization of the same
model. However, an implicit scheme is absolutely needed for real applications where the velocity of light is
very large. The numerical solution of Fig. 3 has been computed with the same code as for the Sue–Olson text
case, with exactly the same scheme. The time step is Dt ¼ 1

2
Dx.

5.3. Stationary case

We solve otEr þ 1
eoxF r ¼ raðxÞT

4�Er

e2 and otF r þ 1
eoxP r ¼ �rtðxÞF r

e2 . The temperature T is prescribed T = 1 if
1.5 < x < 1.8, T = 0 otherwise. The opacity rt is rt ¼ �r ¼ 1 if 1 < x < 1.5, rt = 0 otherwise. The opacity ra

is ra = 1 if 1.5 < x < 2, ra = 0 otherwise. The light�s velocity is 1
e ¼ 103. The boundary condition on the right

is a prescribed source term with an infinite opacity. On the left it is a free boundary condition. Moreover, the
support of the solution does not reach the right boundary.

For this problem it is possible to compute a quasi-analytical solution in the region 0 < x < 1.5. For x = 1.5
one has a boundary condition Er ¼ T 1:5þ ¼ 1. For x < 1.5 the stationary solution of the system is given by
1
eoxF r ¼ 0 and 1

eoxP r ¼ �rt
F r

e2 . Therefore, Fr is constant Fr ” F. On the other hand, P rð1:5Þ � P rð1Þ ¼ �d�rF
e ,
1
in L1 norm for the streaming test case

100 200 400 800 1600

in L1 norm 0.3 0.21 0.15 0.109 0.077

der is approximatively 0.5.

Fig. 3. Radiation energy versus x.
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d = 1.5 � 1. Since ra = 0 for x < 1 the stationary regime is an outgoing regime with Fr = �Er, x < 1. There-
fore, P rð1:5Þ � Erð1:5Þ

3
¼ 1

3
, Pr(1) = Er(1), F = �Er(1). Note that P rð1:5Þ � Erð1:5Þ

3
is a very accurate approximation

because e is small. Therefore, one solves for Er and gets Erð1Þ ¼ 1
3þ3�rde�1Erð1:5Þ � 0. In between 1 < x < 1.5 one

can solve for Pr which is affine with respect to x. Since P r � Er

3
is a very good approximation, then a quasi-

analytical solution is
Erð1Þ ¼ 0; Erð1:5Þ ¼ 1; Er is affine in between. ð43Þ

We plot the result of our algorithm in Fig. 4. One sees a very good agreement between the numerical solution
of Fig. 4 and the quasi-analytical solution (43).

5.4. Transfer

In this test case a transparent material is in between a hot opaque material on the left and a colder (but the
temperature is non-zero) opaque material on the right. The physical solution is a radiative flow that comes
from the left to the right, so that the right material becomes hotter and the left one becomes colder due to
the conservativity of energy. We solve (22). The opacity ra is a function of the material and of the temperature
ra ¼
r0

T 3
with r0 ¼

0 for 0:2 < x < 1:8;

1 otherwise.

	

The opacity rt does not play a important role in the simulation, and is here only to mimic totally opaque
boundary conditions
rt ¼
0 for 0:1 < x < 1:9;

104 otherwise.

	

The initial data are Er ” 0, Fr ” 0 and
T ¼
1 for 0:1 < x < 0:2;

0 for 0:2 < x < 1:8;

0:1 for 1:8 < x < 1:9.

8><>:

The computation is done with 1000 cells. We use infinite opacities near the boundaries. The result is plotted in
Fig. 5. As noticed in the legend of Fig. 5, the results are the same with the diffusion approximation. The reason
is that for t = 3, which is quite a large time for this test problem, the radiative flux is almost zero in the trans-
parent region. This is due to the multiple bounces of the radiative energy on both sides of the transparent
region. To see a difference between the variable Eddington factor approach and the diffusion approximation,
it is necessary to look at transitory regime around x = 1.8. This is done in Fig. 6 where we plot the history of
temperature T (almost equal to the radiative temperature T � Tr because the material is opaque) at x = 1.8 (in
Fig. 4. Numerical solution for the stationary case. Er and Fr versus x. The stationary source is for x P 1.5.



0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

diffusion Er
diffusion  total energy
M1  eps=.001 Er
M1 eps=.001 total energy
M1 eps=.01 Er
M1 eps=.01 total energy

Fig. 5. Er ¼ T 4
r and the total energy T þ Er ¼ T þ T 4

r versus x at time t = 3, computed with the variable Eddington factor model and
e = 10�3. For this test problem the result is the same with the diffusion approximation.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

diffusion, first cell
diffusion, second cell
M1, first cell epsilon=.001
M1, second cell epsilon=.001
M1, first cell  epsilon=.01
M1, second cell  epsilon=.01

Fig. 6. Heating history in the opaque material: temperature T versus the time t for different models at x = 1.8 or x = 1.84.
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the first opaque cell) and at x = 1.84 (in the opaque material). One sees a difference between the results depend-
ing on the model (which can be the diffusion approximation, the variable Eddington factor with e = 0.01 and
the variable Eddington factor with e = 0.001) and on the point (x = 1.8 or x = 1.84). Essentially the variable
Eddington factor with e = 0.001 is very close to the diffusion approximation. However, the variable Eddington
factor with e = 0.01 is slightly different. Oscillations have appeared that we interpret as the result of multiple
radiative bounces between the opaque materials. For longer time, all models have the same history.

5.5. Coupling with hydrodynamics

5.5.1. Radiative Riemann problem

If now we set ra = 0 and rs = +1 then we obtain the simplified hyperbolic set of equations
o

ot
ðqÞ þ o

ox
ðqvÞ ¼ 0;

o

ot
ðqvÞ þ o

ox
ðqv2 þ p þ prÞ ¼ 0; pr ¼

Er

3
;

o

ot
ðqE þ ErÞ þ

o

ox
ðqEvþ pvþ prvÞ ¼ 0; Er ¼ T 4

r ;

o

ot
Sr þ

o

ox
ðuSrÞ ¼ 0; Sr ¼ T 3

r .

ð44Þ
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For this system we study a standard Riemann problem. The initial data are q = 1, u = 0, p = 1, Tr = 1 for
x < 0.5, and q = 0.125, u = 0, p = 0.1, Tr = 0.1 for x > 0.5. The solution consists in a rarefaction fan, a con-
tact discontinuity and a shock. Across the shock and the rarefaction fan T 3

r

q is preserved. A lot of hydro-
dynamic solvers can be used for the numerical resolution. We have used a standard Lagrange + remap
solver with an acoustic flux. We use standard free boundary conditions well adapted for pure hyperbolic
problems.

The results, which are exactly the same for the diffusion approximation and the variable Eddington factor
model, are displayed in Fig. 7 for the density, velocity and total pressure, and in 8 for T 3

r

q ¼
Sr

q , see [35,1].

5.5.2. Radiation hydrodynamics

For this test problem we solve the full radiation hydrodynamics (20) (using the splitting scheme (21) and
(22)) and with the variable Eddington factor given in (2). The initial data are
Fig. 8.
the sho
x < 0:4 and x > 1:6 : q ¼ 0:1; u ¼ 0; phydro ¼ 0:002; T r ¼ T ¼ e=cv; F r ¼ 0;

0:4 < x < 0:8 and 1:2 < x < 1:6 g q ¼ 0:01; u ¼ 0; phydro ¼ 0:0002; T r ¼ T ¼ e=cv; F r ¼ 0;

0:8 < x and x < 1:2 : q ¼ 0:1; u ¼ 0; phydro ¼ 0:001; T r ¼ 1, F r ¼ 0.
The opacities are
0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Density
Velocity
Total pressure

Fig. 7. Density, velocity and total pressure versus the position x at t = 0.1 with 1000 cells: CFL = 0.5.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

Sr/rho

Radiative entropy T 3
r

q ¼ Sr
q versus x at t = 0.1 with 1000 cells: CFL = 0.5. One notices the exact preservation of this quantity across

ck and the rarefaction fan.
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r 	 0; s ¼
0:2 in the left; central and right regions;

0:2� 10�7 otherwise.

	

An energy deposit is made at each time step in the central region
e( eþ 50000� Dt.
Since the central region is hotter, then a flow a radiative energy passes through the transparent intermediate
regions, and arrived at the borders of the opaque extreme two regions. The time of observation is such that the
solution has not reach the exterior boundaries.

A zoom around x = 0.4 is given in Fig. 9. One sees that diffusion is in advance with respect to the variable
Eddington factor. An interpretation is that diffusion propagates instantaneously the radiation since the equa-
tion is global. Therefore, the radiation is over-predicted with the diffusion model. On the other hand, the var-
iable Eddington factor is an hyperbolic model with finite speed of propagation. The radiation takes some time
to arrive in the region, coming from the central region. Our results are stable.

We give a global view of the radiative quantities, Er, Fr and f ¼ F r

Er
in Fig. 10. The result is limited since

|f| 6 1 everywhere. In Fig. 11, we plot the the radiative energy Er in the interval 0 < x < 1 for 100 and 400 cells,
to illustrate the stability and convergence of the diffusion approximation and the variable Eddington factor
method. Both schemes are equally stable. The diffusion gives a flat profile due to the infinite propagation speed
of this model.
0 0.5 1
0

0.5

1

1.5

2

Tm diffusion
Tr diffusion
Tm M1
Tr M1

Fig. 9. T and Tr versus the position x for diffusion and the variable Eddington factor, 100 cells, T = 0.005.

0 0.5 1 1.5 2
-1

0

1

2

3

Er
f=Fr/Er
Fr

Fig. 10. Er, Fr and f ¼ F r

Er
versus the position x: 100 cells, T = 0.005.



0.5 1
0

0.5

1

1.5
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2.5

3

M1 100 cells
M1 400 cells
diffusion 100 cells
diffusion 400 cells

Fig. 11. Convergence study of the radiative energy plotted versus the position x: 100 and 400 cells.
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-0.1

0

0.1

0.2

0.3

M1
diffusion

Fig. 12. Material velocity u versus the position x at a given time.
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In Fig. 12, we plot the velocity obtained with the diffusion approximation and with the variable Eddington
factor method. The physics of the problem is the following: an energy deposit his made by the radiation at the
interface opaque/transparent x = 0.4. Therefore, the pressure increases and pushes the opaque material on the
left (u < 0 for x < 0.4) and the transparent material on the right (u > 0 for 0.4 < x < 0.4 + e). Nevertheless
0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
Tr, static case, 800 cells
Tr, shifted, 800 cells

Fig. 13. Shifted versus non-shifted calculations. Er versus x.
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there are some differences. Essentially the velocity profile is flat and equal to 0 for 0.5 < x < 0.8 computed with
the diffusion approximation. A possible interpretation is the infinite speed of propagation of the diffusion
approximation which enforces a constant pressure (therefore no acceleration in this region). On the other
hand, the propagation of speed is finite with the variable Eddington factor method : it explains the smooth
acceleration on the left of the material in the region 0.5 < x < 0.8. However, the time scale is the time scale
of radiation, which is much smaller than the hydrodynamics time scale. So the impact of these velocity fields
is absolutely negligible on the density.

In the final test case, Fig. 13, we have zeroed the energy deposit. The velocity is v = 0 and v = 200, every-
where at time t = 0. Therefore, we expect the solution with v = 200 to be equal to the solution with v = 0, but
with a shift. The results show it is indeed the case. For this particular test problem, we found necessary to
advect the opacity with an exact method. If not numerical diffusion smear the opacity profiles at the interfaces
opaque/transparent which give bad results. Here the results are good.

6. Conclusion and perspectives

We think that the method proposed in this work gives good results in 1D. At least the method is stable and
accurate for diffusion limits, the code is robust, and the numerical results are satisfactory for a large variety of
test cases. One could also think about coupling the scheme proposed in this work with higher order schemes
with a h-method. The interest could be a less dissipative scheme in free streaming regions.

The method does not depend on the particular Eddington factor used for radiation, and therefore can be
used in other areas, for neutrinos [31], electrons and all models with the same structure where the diffusion
limit is somehow the isotropization of a more general system of partial differential equations [4].

Currently, we work on the extension for multidimensional problems. The interest of moment models for
multidimensional problems could be a better treatment of the anisotropy of radiation.
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